Tumor Blood Flow Differs between Mouse Strains: Consequences for Vasoresponse to Photodynamic Therapy
نویسندگان
چکیده
Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.
منابع مشابه
Determination of Vascular Endothelial- and Fibroblast-Growth Factor Receptors in a Mouse Fibrosarcoma Tumor Model Following Photodynamic Therapy
The role of angiogenic molecules, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) in tumor angiogenesis was well confirmed. Photodynamic therapy (PDT) action is, to very high degree, based on tumor vasculature damage. Therefore, it seemed to be important to evaluate growth factor receptors after PDT. The extent of receptor expression was studied by immuno-histo...
متن کاملThe characterization of blood flow changes in mouse tumor during Photofrin-based photodynamic therapy by using the color Doppler ultrasonography.
Changes in blood flow velocity through the tumors can induce damage of tumor microcirculation and thus may contribute to the final destruction of tumor masses after photodynamic therapy (PDT). The aim of this study was to evaluate the blood flow changes in a SCCVII mouse carcinoma during Photofrin-based photodynamic therapy by analyzing several quantitative spectral Doppler parameters [maximum ...
متن کاملLocal physiological changes during photodynamic therapy.
BACKGROUND AND OBJECTIVE Herein an overview is provided of the causes, consequences, and significance of photodynamic therapy (PDT)-mediated effects on tumor oxygenation and blood flow during illumination. STUDY DESIGN/MATERIALS AND METHODS Techniques particularly valuable to this research have included tissue oxygen tension measurement by the Eppendorf pO2 Histograph; spatial quantification ...
متن کاملPhotodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy
One of the main mechanisms of action for photodynamic therapy (PDT) is the destruction of tumor vasculature. We observed the PDT-induced vasculature destruction in a mouse model of skin cancer using two techniques: Photoacoustic microscopy (PAM) and diffuse correlation spectroscopy (DCS). PAM showed high-resolution images of the abnormal microvasculature near the establishing tumor area at pre-...
متن کاملNanotechnology; its significance in cancer and photodynamic therapy
In the last decade, developments in nanotechnology have provided a new field in medicine called “Nanomedicine”. Nanomedicine has provided new tools for photodynamic therapy. Quantum dots (QDs) are approximately spherical nanoparticles that have attracted broad attention and have been used in nanomedicine applications. QDs have high molar extinction coefficients and photoluminescence quantum yie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012